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TKXXECAL NOTE 4368

A STUDY OF SEVERAL THEORETICAL METEODS FOR COMPUTING

THE ZERO-LIFT WAVE DRAG OF A FAMILY OF OEEN-NOSED

BODIES OF REVOLUTION IN TEE MACH NUMBER RANGE

OF 2,0 TO 4.0

By Leroy L. Presley and Emmet A. Mossman

SUMMARY

The wave drag of a fsndly of open-nosed bodies of revolution was
computed by six approximate theories, first-order perturbation theory,
second-order perturbation theory, generalized shock-ewansion theory,
second-order shock-e~ansion theory, tangent-wedge theory, and impact
theory, and by the method of characteristics for Mach numbers between
2.0 and ~.O. The best agreement with the method of characteristics was
provided by second-order perturbation theory and second-order shock-
expansion theory with the latter being the most attractive from the
standpoint of computing time required versus accuracy obtained.

The wave drag, for bodies of the type investigated in this study
with the sane initial HP angle and the same dismeter ratio (initial to
maximum diameter), was found to increase sharply for fineness ratios less
than 3 but to be nearly constmt for fineness ratios above 3. The wave
drag was found to decrease nearly Enearly as the disxaeterratio increases
for bodies having the same initial lip angle md fineness ratio.

An approach is
automatic computing

given for adapting the method of
machine procedure.

characteristiccs

INTRODUCTION

For aircraft configurations employing a ~d-nacelle arrangement

to

to
house an air breathing propulsion system, the external wave drag of the
engine housing can be a sipyificant portion of the total drag of the
aircraft. In the absence of systematic experimental data to aid in
estimating this wave drag, the U6W approach is to calculate it theoret-
ically. At present there are a number of different theoretical methods
wMch can be used for such calculations.m However, the results obtained
from the various methods are not consistent over a tide range of Mach
numbers and body shapes and the computation time &f fers widely among

‘d the methods. The investigation descriBed herein was made, therefore,



2

to compare the theoretical wave drag
methods with that from the method of
choice from the tiemint of average
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as computed using six approximate
characteristicsin order that a
computing time required and

accuracy obtsi.nedcould be made. The theories which were compared to
the method of characteristicswere: first-order perturbation theory
(refs. 1 and 2), second-order perturbation ~eory (ref. 2), generalized
shock-expansion theory (refs. 3 and 4), second-order shock-expansion
theory (ref. 5), tangent-wedge theory (ref. 6), and impact theory (ref. 7).

To provide a reference for the comparison, the study was conducted
for a fsmdly of open-nosed bodies of revolution having a fineness ratio
of 5, a ratio of initial to maximum dismeter of 0.742, and lip angles
between 1.478° and 35.844°. This family was selected since its contours
are representative of the nacelles of present day pod-nacelle arrange-
ments for Jet engines. Thus the wave-tiag characteristicsof such a
family are of interest in themselves. The effects of varying fineness
ratio end diameter ratio were also determined using the method of charac-
teristics and generalized shock-eqansion theory.

THEORETICAL METHODS

Althou@ the various theoretical methods used in the present study
have been discussed in detail in their respective references, it is con-
sidered appropriate to this report to discuss briefly each of the methods,
pointing out in particular their approach to the s~lution of the super-
sonic flow field about an open-nosed body of revolution and their expected
range of ap@icability. All of the theories used in this analysis have
as their basis a solution of the gasdynamics equation shown below:

(1)

where the symbols are defined in appendix A. Since this equation, which
is applicable to any steady intiscid flow of a perfect gas, is non~near,
simplified methods of solution must be used for most problems. The
simplified methods of solution which have resulted in the theories used
in this study are: numerical solution of equation (1), linearization
of equation (1) with subsequent analytical solution of the linearized
equation, smd a~roximate solutions of equation (1) which are applicable
to certain flow regimes. In the application of the theories, the followi-
ng conditions were imposed:

(1)
mass-flow

(2)

(3)

The flow entered the nose of the body at supersonic speed (i.e.,
ratio of unity).

The bodies were immersed in an ideal.gas.

The boties were at zero angle of attack.

*
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Method of Characteristics

3

One method of solting the gasdyaamics equations is by numerical
means. Such a method is greatly facilitated in the present case of
supersonic flow since the gasdynsmics equation is a hyperbolic differ-
ential equation and of a type that is integrable on characteristic sur-
faces which correspond to Mach lines. It is then necessary to rewrite
equation (1) in a form suitable for numerical integration along the Mach
lines, and several different forms have been derived (refs. 8, 9, and 10).
One form of the comparability equation for the method of characteristics
which was considered to be the most satisfactory for the present study
since it contains only two flow-field variables is as follows:1

where

(2)

(3)

tith the upper si~ referring to the first family Wch fine and the lower
to the second family Mach line as shown in figure 1. Equation (2)
expresses the relationship between static pressure, stream angle, and
Mach angle along Mach lines in the flow field and is appMcable to either
rotational or irrotational steady flow of an isoenergetic gas. When
applied to rotational flow, as in this study, the change in entropy
normal to the streamlines is taken into account by considering the change
in total pressure along the Mach 13nes. This method is limited to bodies
with supersonic flow behind the nose shock.

h the actual solution of the flow by the method of characteristics,
the compatability equation is put into finite difference form and solved
point for point in the flow field. If solved by purely nmerical means,
the computations are very long and laborious for any practical problems
and become feasible only with the use of automaticcomputing machines.

In the present study, the co@?wtations were made using u automatic
computing machine. The equations used as well as a discussion of some
considerations in the adaption of the
automatic computing machine procedure

First-Order

method of characteristics to
are given in appendix B.

!beory

W contrast to the numerical integration of the nonlinear gasdynsmics
equation by the method of characteristics, first-order theory introduces

l~s form is not given tirectly in either references 8 9, or 10
but can be obtained by a suitable combination of equations 3:21 to 3.23
in Chapter I of reference 10.
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~ Pert~~atlOn function in~ tie equation ma linearizes the resulting
expression so that it may be solved analytically. This is tine by con-
sidering the magnitude of the velocities in the following mmner

u= U+up V=v P
(4)

Up and vp << U up smd Vp << a

and defining a perturbation potential such that

+
% “&

&Vp = ~r

Eqyation (1) can be put into the following form

.—

If the squares and products of derivatives of the perturbation pvtential
are neglected, the following equation results

where ~’ = M’-l. Equation (6)

*+ L&=o
ax2

(6)
r &

is the linea?xt.zedform of the rotential
flow equation. Dets3& of We- integration of this equation ar~ given in

~

references 1 and 2. Such a solution is ap@icable b the calculatio~ of
flow fields at values of the hypersonic similarity parameter, l&J50,less
thsl’11.0. It in effect neglects entropy losses due to the presence of
the body since entropy losses are of third order in the perturbation
~tential.

Second-Order Theory

The third approach to obtaining a solution of equation (1) is to
use an iteration procedure, an approach first considered by Busemsan
and later extended by Van Dyke (ref. 2). For this method, a fj.rst-or&r

solution is obtained as described previously. This solution is substi-
tuted inta the ri@t-hand side of equation (5) and a second-order
perturbation potential is found. The method of solution is given in
reference 11. Therein it was stated that the initial regularity of the
body must be less thsm the free-stream Mach sngl.e.

In the present study the computations were done using an automatic
computing machine since they are len@hy tien done by hand. The initial
angularity of the bodies was restricted to 13° or less because of the

c.
—.

Q



limitations in the automatic computing machine _progrsmjEKLangle con-
4 siderably less than that permitted by the theory. This theory is also

applied only in the range of l&& < 1.0.

GeneraU.zed ~ock-qsion Method

A method which has as its basis an appro-te solution of the exact
equation of motion is the well-known genertized shock-expansion theory.
The a~rotimation made for this theory consists of neglecting the term
(dS/r)sin p sin 5 of equation (2) for cases in which the rate of chmge
of surface angle of the body is large compared to its divergence. The
resulting expression is seen to be a differential form of the Prandtl-Meyer
equation. The flow field downstream of the nose shock wave can then be
considered of the Prandtl-Meyer typs. The aforementioned assmption
regarding the body shape is made in this theory so it could be expected
to become accurate when I&&o >> 1.0 ~d when the area ratio of the body
(maximum to initial.area) is near 1.

The application of this method begins by first apprmdmating the
body by a series of strs3@.t-line elements, tangent to the original.tidy.
The flow at the nose is defined by means of the Rankine-Hugoniot relations

* for an obliqpe shock wave. Since the flow downstream of the nose is of
the Prandtl-Meyer type, the yressure can be found on any tangent line if
the pressure and Mach number on the preceding tangent-line element are

u known. The pressure is taken to be constant on any @ven tsmgent-15ne
element. ‘Ihemethod is limited as is the method of characteristics to
bodies that have supersonic flow behind the nose shock wave. The calcu-
lations for this method can be made efficiently using a desk calculator
and the tables end charts of reference X?.

ti the present investigation, the body contour was approximated by
13 straight-llne elements.

Second-Order Shock-mansion Theory

Second-order shock-~sion theory was developed to provide a
closer apjymdmation to the flow field for the cases when M&. is near
1.0. This was done by developing sn appro-tion to the part of equa-
tion (2) that was neglected for the generalized method. Two siaficant
differences from the generalized method arise out of this closer approxi-
mation. First, the exact pressure gradient at the nose of the body is
found from the method of characteristics. Secondly, along each tangent
line used to approximate the body contour, the pressure is found to vary

●

exponentially. The asymptote of the exponential pressure variation is
assumed to be equal to the pressure on a cone having the same slope as

“* the tangent-line element and at the sane free-stream Mach nwnber.
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The application of this method
method except the pressure gradient

is
on
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*

similar to that of the generalized
each tangent line is found by the

relations given in reference 5. The results can be obtained by means of G

a desk calculator but the process is somewhat tedious.

~ the present investigation, the body contour was approximated by
13 strai@t-line elements.

Tangent-Wedge“Method

An approximation to the genertized shock-eqsion method is the
tangent-wedge method. This approximation is based on the assumption that
the pressure on the body at any point is a function of the net flow deflec-
tion angle from the free stream. Thus in this method, the pressure at any
point on the body can be found from the Rankine-Hugoniot relations for
oblique shock waves (for bodies inclined into the free stream) or the
Pmndtl-Meyer relations (for body surfaces inclined away from the free
stream) in which the deflection angle and the upstream Mach number used
in these relations are the local singleof the body and the free-stream
Mach number, respectively. The method is therefore limited to bodies with
angularity less than the detachment eagle of a two-dimensional shock wave
snd could be expected to become accurate in the same regions as the gener-
alized shock-eqsion method. The computations for this method are very
simple and can be made efficiently by mems of a desk calculator and the
charts of reference 3.2.

h the present investigation, the pressure was computed at 14.points
along the body.

Impact Theory

A direct approximation to the tangent-wedge method for certain flow
fields has resulted in defining em area where Newtoniu impact theory
becomes applicable. For flows at infinite Mach number, iherein y = 1.0
and the shock wave is coincident with the body cmtorm, the expression
for the pressure coefficient at any point on the body as given by the
tsngent-wedge method can be shown to reduce to

CP = 2 sin%

This expression was obtained by Netin by neglecting centrifugal forces and
assuning that the component of the momentum of the free-stresm air that is
normal to the body surface is absorbed, thereby creating a force on the
surface. This theory which is applicable to any body contour would be
expected to become applicable for M&>> 1.0. Computations for this theory
are very simyle sm.d

In the present
along the body.

csm be made efficiently using a desk calculator.

investigation, the pressure was computed at 14 points

—

—

r

W
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COMPUTATIONS

Body Contours

Throughout this investigation, a family
are a function of initial lip angle, 50, the

of profiles whose contours
diameter ratio ~/~ and

the fineness ratio Z/~ was used. Tlieequation relating the Bodies is
given in reference 13 and has the foil.otingform:

% = rm - (rm-ro) (l-x) q (8)
where q is the relating pammeter for the faad.lyof curves and is
defined by

me diameter ratio, ~/~, was varied from 0.707 to 0.898. However,
for the majority of the investigation, a value of O.7k2 was used, Thi.s

Ct@neter ratio is in the range of values considered in reference 14 and
of those necessary to envelop existing turbojet and ramjet en’ginesat
about & = 3.0. !llnediameter ratio was varied while the initial lip
sngle and fineness ratto were held constant.

The majority of the theoretical investigation was conducted with
profiles having a fineness ratio of ~. These profiles are showm in fig-
ure 2. A small part of the theoretical investigation was concerned with
varying the fineness ratio of the bodies from 0.625 to 10 while the
initial lip angle and diameter ratio were held constant.

Wave-Drag Computation

The wave hag was obtained from the following relationship

CD =f Cpd@)

The methods discussed previously were used to
of

by
9,
of
to

&/Ao . The above integration was csxried

(lo)

calculate ~ as a function
out graphically.

RESULTS AID DISCUSSION

Pressure Distributions

The distribution of the etirnsl pressure coefficients as computed
the seven theories described earlier is presented in figures 3 throu@
and are in the form of static-pressure coefficient, Cp, as a fUIIC_biOn

local area ratio, Ab/&. These curves were subsequently integrated
obtain the wave-drag coefficients.
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Comparison of typical pressure distributions is shown in figure 10.
From these curves three general comparisons can be made as to the agree-
ment between the method of.characteristiccs and the various approxhnate
theories. The first point of comparison is the magnitude of the initial
pressure rise at the nose of the body. Generalized shock-e~ansion,
second-order shock-e~ansion, and tangent-wedge theory (omitted from the
figures because of its closeness to generalized shock-exyansion theory)
have the same initial.static-pressure coefficient as the method of
characteristics since all of these theories use the exact pressure at
the nose. First-order perturbation theory and impact theory give lower
values of initial static-pressure coefficient than the method of charac-
teristics whereas second-order perturbation theory gives a hi@er value.
The second point of comparison is that only second-orderperturbation
theory and second-order shock-expansion theory predict sm initi~l pres-
suxe gradient which is similar to that predicted by the method of
characteristics. It should be mentioned that the initial pressure
gradient of the second-order shock-expsnsionmethod is inherently iden- .
tical.to that of the method of characteristics. Finally, the predicted
variation of static-pressure coefficient downstream of the nose differs
for the various theories. For a curved body such as investigated herein,
the method of characteristicspredicts positive pressure coefficients
over most of the body and an overexpansion with resulting negative static-
pressure coefficients near the base of the body. Three of the theories,
first- snd second-orderperturbation theories, and second-order shock-
expansion theory, compare favorably with the method of characteristics

.<l

for predicting negative static-pressure coefficients for curved bodies.
However, positive pressure coefficients were predicted over the entire
body by generalized shock-expsnsiontheory, tangent-wedge theory, and

d

impact theory. To swmmarize, the results of figure 10 indicate that
second-order perturbation theory, and second-order shock-expsnsion theory
provide the best agreement with the method of chamcteri.sties for these
body shapes and Mach numbers.

The variation of the static-pressure coefficient for bodies of
varying fineness ratio (z/~ of 0.625 to 10), but with constant initial
lip singleand diameter ratio, is shown in figure 11 for & = 2.5. These
distributions were computed by the generalized shock-e~ansion theory
(fig. U.(a)) sndtheuthodof characteristics (fig. n(b)). Both
theories indicate that at a given area I%,tiO .(Ab/~), a lower static
pressure can be obtained with a body of hi~er fineness ratio. The
si~ficance of this will be discussed later.

The effect upon the static-pressure coefficient distributions of
varying the diameter ratio, while the initial Up angle, fineness ratio,
smd ~ are held constant, is shown in figure 12. It can be seen that
the pressure distributions for the bodies are similar in that at the ssme
proportionate area, the pressure is approximately the ssme.

h.

—
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WAVE DRAG

The theoretical.wave-drag coefficients for the bodies hatig a
fineness ratio of ~ snd a diameter ratio of 0.742 at Wch numbers of
2.o, 2.5, 3.0, and 4.o are presented in figure 13. As indicated, there
is a large difference in the results as obtained from the various methods
throu@out the Mach number range of the investigation. These differences
are seen better in figure 14 in which the wave drag computed by the method
of characteristics is used as a reference and the error in the wave drag
as computed by the six approximate methods is shown. The error is given
as a function of the two-dimensional hypersonic similarity parsmeter,
Mm50 ● It csm be seen tiat both genertized shock-ewansion theory and
tangent-wedge theory overestimate the wave drag while impact theory
underestimates the wave drag throughout the entire rsnge of M#o
investigated. The error for each of these methods is sizable for values
of ~50 < 1.0 but decreases as ~~ increases. The two perturbation
theories have good accuracy at low values of M@. (&b. = O.1 to 0.2)
but start becoming inaccurate as ~~ increases. The iteration in
second-order perturbation theory is seen to be effective in increasing
the range of accuracy over that of the first-order solution. Second-
order shock-expansion theory has good accuracy in the range near
&5 = 1 but becomes inaccurate at extremely low values of M#. The
apparent regions of applicabilityy of the various tieories are as would be
expected from their assumptions discussed preciously. A smmnary of the
wave drags obtained by tie method of characteristics is presented in
figure 15 in the form of a wave-drag parsneter, CD (0.~2), as a ~ction
of M&50 (ref. 15). It is seen that the wave drags correlate well with
a curve representing the mean of the values at any given ~..

The effect of varying the fineness ratio, Z/~, on the wave drag as
computed by the method of characteristics and generalized shock-ewsion
theory is shown in figure 16 for tidies with an initial Up an@_e of
21.l@ and a dj.ameterratio of 0.742, ad at a Mach number of 2.5.
As was mentioned earlier, the bodies with hi@er fineness ratios had a
lower static pressure existing at the seinearea. Thus these bodies would
have a lower wave drag. The results as shown indicate that the wave drag
of open-nosed bodies of revolution (mass flows of unity) is a &unction of
the fineness ratio sad that a fineness ratio of at least 3 is necessary
to obtain near minimum wave drag.

The variation in wave drag with changes in diameter ratio is shown
in figure 17 for generalized shock-expansion theory ad the method of
characteristics. The data show that the &ifference in wave hag as
computed by the two theories decreases as the dismeter ratio approaches
1, a result that could be e~cted from the assumptions of generalized
shock-expansion theory. The wave drag is also seen to decrease almost
linearly as the diameter ratio increases.
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Computing Time

.

The final choice of which theory to use in any given case must be
governed by the accuracy desired and the computing time available. The
computing time and accuracy of the various theories are shown in the
following table.

Computing time,
Theory hr Accuracy

The

the
for

Method of characteristics 40
First-order perturbation 16
Second-order perturbation 24
GeneraM zed shock expansion 2
Second-order shock expansion 8
Tangent wedge 1’
h-pact 1

computing times given are for one person @.ng
solutions except the method of characteristiccs
body. The computing time”given for the method

Best
Fair
Good
Poor
Good
Poor
Poor

a desk calculator.
are for 14 points on
of characteristicsis

a solution in %ich–the me;h size was allowed to become large
(c/r = 1.0). Such a solution will give wave-drag coefficients XM.ghtly
less thsm those presented in this study. If -greateraccuracy is desired
(finer mesh size) the computing time for hand computation csm be considered * _
to increase in proportion to the sqmre of the ratio of the mesh size for
c/r = 1.0 divi.dedby the mesh size used (c/r

CONCLUDING REMARKS

The wave drag of a fsmily of open-nosed
computed by six approximate theories and the

< 1.0). w

,bodiesof revolution was
method of characteristics

for a Mach number range of 2.0 to 4.0. Using the results from the method
of characteristics as a reference, the investigation showed that the
three theories which required the shortest computing time, generalized
shock-eqsion, tangent-wedge, and impact theories were in general the
least accurate. First- and second-order perturbation and second-order
.shock-expnsion theories gave more accurate results, predicting the wave
drag to within 10 percent of that from the method of characteristics over
much of the ranges of Mach number and body shapes investigated. The range
of applicability of the theories was found to vary with the perturbation
theories giting good results at &50 < 1.0, ‘s-econd-ordershock eqmnsion
giving good results near M#50 of 1.0 with the generalized shock-e~ansion,
tangent-wedge, and impact theories starting to give good results at
I&&. >>1.0. In general, considering computing time as well as accuracy,
second-order shock-eqsion theory was the most attractive within the
range of variables investigated herein.

r

--

r
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The effect of varying the fineness ratio, l/~, on the wave drag was
investigated by the use of two theories, the method of characteristics
sad generalized shock-expansion theory. The results of both theories
indicate that for bodies of the type investigated in this study snd having
the same imitial lip angle and diameter ratio, near minimum wave drag can
be obtdned with a fineness ratio above 3.0.

The wave drag was also computed for bodies having various dismeter
ratios with the ssme initial lip angle and fineness ratio. For these
bodies, both the metiod of characteristics and generalized shock-expansion
theory predict a near linear decrease in wave drag as the diameter ratio
increases.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics

Moffett Field, Callf., Aug. 21, 1958
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APPENDIX A

NOTATION —

For convenience the list of symbols has been ditided into two groups,
those used throu@out the paper and those used exclusively in appendix B.
Following are those symbols in the first group.

A

a

CD

Cp

c

D

a

2

M

P

Pt

q

r

s

u

u

v

x

P

Y

area, sq ft

speed of sound, ft/sec

wave-drag coefficient,
&

~-l?m
static-pressure coefficient, —

%0

distance from win% to point along Mach lines in method of
characteristics solution divided by Z

drag, lb

body dismeter, ft

totsl length of body, ft

Mach number

static pressure, lb/sq f%

sta~ation pressure, lb/sq ft

dynamic pressure, lb/sq ft

radial distance divided by z

distance along Mach ldnes in method of characteristics

free-stream velocity parallel

axial component of velocity

radial component of velocity

tox axis

distance along tis of

G

ratio of specific heat
at constsnt volume

body from origin ditided by z

at constant pressure to specific heat

w

9
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.

8 stream angle, radians

d
T parsneter relating body shapes (see eq. (9))

e shock-wave angle, radians

A *

Mach angle, sin
-~ 1

v —, radians
M

P mass density, slugs/cu ft

P perturbation potential

Subscripts

b tidy

m maximum geometric Characteristic of body

o characteristics of body at ori@n

P perturbation quantities

* a free-stream conditions

The following symbols are used exclusively in appendix B which lists
the equations used in calculating the wave drag by the method of character-
istics●

Cf distance along first ftily ~ti he from computed point to
irmnediatelypreceding upstream point ditided by Z

Cs distauce along second family Mach line from computed point to
imnetiately preceding upstream point divided by 2

n nwnber of the computed point
(The number sequence proceeds from ~int nearest body to shock
wave =d from ray to ray in downstream direction (see fig. 1).)

N number of points in input ray (N = 5 in fig. 1)

E a smaU arbitrary number

.. in iterative methods

=

indicating closeness of approximation
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.

Subscripts

character stics at pint whose number is n-1 and ~ch
lies on first family Mach line immediately preceding
computed point

characteristicsat ~int of number n

characteristicsat point whose number is n+l-N and which
lies on second family Mach line immediately preceting
computed point

w characteristicsat point whose number is n-N and whd.ch
lies on shock wave irm.nediatelypreceding computed point
on shock wave

x,2,.. .i number of iterations

Superscripts

1 “ i99 iterations

w
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AH?ENDIX B

CALCUIA!TIONSBY METEOD OF CHARACTERISTICS

Solutions by the method o-fcharacteristicspresented in this paper
were computed by an automatic digital computing machine. l%e equations
used in the solution are also applicable to manual.computation. They
are therefore listed sad discussed herein for ready reference of the
interested reader.

IR the application of the method of characteristics to the calcu-
lation of the static pressure on a body of revolution, the axLalLy
symmetric flow field bounded by the body surface and the nose shock wave
is mibditided by a network of lines inclined to the local.streamline
at the local Mach angle (see fig. 1). Points .me defined as the inter-
section of a psdr of such lines (field points), the intersection of a
line with the body contour (body point), or the intersection of a line
with the shock wave (shock-wavepoint). A ray is defined as the Ene
containing a series of pints connected by first fsmily Mach lines.
!l?husin figure 1, Pints 1 to 7 and 8 to 14 lie on two separate rays.

Two types of equations are required im the solution, those which
define the coordinates of the pint and those which define the aero-
dynamic properties at the point. The calculation of the coordinates

. and aerodyasmic properties proceeds from point to point along a ray,
commencing at the body and ending at the shock wave, and then from
ray to ray in the downstream direction until the end of the body is
reached. Tn the following discussion, the equations will be grouped
according to whether the pint is on tie input ray, or a field, body,
or shock-wave point C@zustream of the inyut ray. The equtions are
given in terms of am arbitrary point so they can be used in the
repetitive type of calculation reqtired by tie method of characteristics.

Characteristics of Points on Input Ray

The input ray is located on a first family Mach line sufficiently
close to tie nose of the body that the flow properties at the mints can
be obtained with the assumption that the shock wave is two-dimensional.
ti the present case the input ray intersected the body at ~ <0.001.
The coordinates of mints on the input ray are

N-n
Xn

[

n-~ %-%*(V+5) -r.
=~%+~ tan e-tan(@) 1 (Bl)
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(B2)

where e is the two-dimensional shock-wave angle corres~nding to a
deflection equal to. 50 end v end 5 are the flow characteristics
behind the wave.

It should be mentioned that”the eqmtions discussed hereinafter are
adaptable for determining the entire flow field about a closed-nosed
body of revolution as well as the open-nosed bodies studied in this paper.
In the former case, the flow behind the nose shock must be supersonic.

Characteristics of Field Points

The equations for

rn =

the coordinates of the field points are:

~-xf+rscot(p-b) s+rfcot(y+5)f
(B3)

cot(p-5)6+cot(p+5)f

and

~ = (Y?S-??n)COt(~-5) S+XS (B4)

The distances along the Mach lines from the calculation point to the
preceding known points are given

Cf =

Cs =

The first and second family

by:

h-rf .

sin(p+5)f

compatibility equations, equation (2)
in the body of the paper, are put in finite difference fozm expressing
the difference between the aerodynamic properties at point n and the
preceding points along the first smd second family Mach lines, and are
solved simultaneouslyto give for the stresm angle at point n

L

cf(A sin v sin b)f cf(A sin p sin 5)s
+

rf rs 1 (B7)

.

.

*
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Assuming the total pressure to vary linearly with distance normal to
streamline and the variation of stream angle to be small in the vicinity
of point n gives

(~! = ccfs:~$ti J[(as-(aj<af

The ratio of local static pressure to local total

(B8)

from which

.

n and hence

h . sin-’ ~

pressure is

(B9)

(BIO)

(Bll)

(B12)

Characteristics of Body Points

The body ~int n. is at the intersection of the second family Mach
Lime from Pint n + 1 - N and the body contoux. Hence the coordinate
equations sre dependent on the analytic expression for the body contour.
If the expression is not simple, an expllcit solution of the intersection
point may be iwssible, as in tie present case. ~ such cases Ne~on’s
approximation can be used to solve for the tial. location of the point
as follows. Let the difference between the body radius and the radial
distaace of the second fsmily Mach line from Nint n + 1 - N at the
same value of x be expressed as

f(x) = ~(x) -rs+(x-xs)taa(y-b)s (B13)

where ~(x) is the analytic expression for the body contour, so that
at point of intersection

f(xJ = o (B14)
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To solve for ~, let xs ~ . x~ and solve

X,= X. AL= X=- f(x~)

df(x)/dx df(%)/~

Repeat this opemtion letting x = ~ and continue

xi-xi-l < e

NACA TN 4368

(Bl~)

until

(B16)

The VSJ.lEOf Xn is taken to be xi. Then the ra~us at tie inter.
section point is

a = rs-(xn-xs)tan(p-b)s (B17)

The distance along the second family Mach line from point n to
the preceding point, cs, is given by equation (B6) and the stream angle,
~, is givenby the slops of the body contour. These two values are used
in equation (38) to determine the static pressure on the body at pxint n.
The static-pressure coefficient is then given by

(P/P~)n-l
%=

(Y/2)&’

Since the body contour is a streamline, the

(B18)

total mressure remains
constant along the body. The remaining flow chara&eristics are .
determined from equations (B1O) to (B1.2).

Characteristics of Shock-Wave Petit

The shock-wave point, n, is at the intersection of the first family
Mach Mne from point n-1 and the shock wave from mint n-N. The
coordinates are given by

xwtan 0W-xftsm(~% )f+rf-rw
%= (B19)

tan ew-tan(p+b)f

and

rn = (Xn-Xf)tSll(p+b)f+rf (B20)

The distance along the first family Mach line, cf, is given by equa-
tion (B~).

A simple explicit relation involving the static pressure and
def~ection a@le immediately behind a shock wave is not available. It
is tierefore impractical, and probably im~ssible, to determine the static
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pressure and deflection angle at the shock-wave ~int by solting simul-
taneously the equation relating pressure and deflection angle across the*
shock and the one compatibilityy equation available. Iterative methods
are therefore used. The compatibi~ty eqution available is

*

To commence the iterative procedure, let

(B21)

(B22)

and find ~’ from equation (B21). The stream angle ~’
is takenas the deflection angle for a tm-dimension~ shock wave at point n

and the shock-wave angle computed from

sid%n’ +g sin4en’ +h sinaen~+j = o (B23)

where

Equation
Briefly let

so

To

g=

h=

J=

(B23) iS solved most

f(et) = sinset+g

that at point n

J
readily by Newton’s

sin4e:+h sire%*+j

(B24)

Wprotimation.

(~5)

(B26)

.f(ez’)

df(8=’ )/d sin 8=’

(B27)
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Repeat the operation letting e’ = 02’ and continue until

ei’-ei-l’ < ~

The value of en’ is tsken to be ei’.

me static-pressureratio across a shock wave corresponding
given shock-wave angle is

P—=
Pm

The static pressure at point

Let

.27&J’sin’6-(7-1)

7+1 --

n is then tsbn as

in eqyation (B21)
(B23) tO (B31) j.S

men

(a”=:1(*X+27&2s’~-(7-’)
1

t-

(’91=(ill”‘“

(B28)

toa

(B29)

(B30)

(B31)

—

.

and solve for ~~’. The process involving equations
repeated until i“

.

~L-~i-x < ~ (B32)

(B33)

~ . 5ni J
!l?he total pressure loss throug!h the shock wave is given by

(d [Qt=

]%

(7+l)&2sin2~ 7-= = *
P (y-l)lQ2sin%n+2

(B34)
m

The remainder of the aerodynamic characteristics are found by means of
equations (B1O) to (BE).
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Mesh Size

Accurate solutions of the method of characteristics reqtire that
the distsnce between lpints, mesh size, be small. However, when the
mesh size, c/r, becomes large, it is necessary to iterate the points
affected. This iteration consists of averaging the aerodynamic properties
of tie known md computed points, assigning them to the coordinates of the
known @nt snd recomputing the computed ~int. ~ the actual machine
computation, a c/r of 0.25 was used as tie criterion for iteration when
N = 10 andO.10 when I?= 20, and the iteration was performed only once.

The computing time (on m IBM 653) for 10 snd 20 point solutions
was 3/4 and 3 hours, respectively. For curved bodies, the difference in
static-pressure coefficient distribution from 10 and 20 @nt solutions
was insifglificsllt.For strai@t bodies, however, it was found necessary
to start at x< 0.001 in order to obtain a pressure distribution with
no discontinuities.
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FiK 3.- The variation of static-pressure coefficient with local-area
ratio; method of characteristics; fineness ratio = 5.0; diameter
ratio = 0.742.
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Figure 6.- The variation of static-pressure coefficient with local-area
ratio; generalized shock-eq?ansion theory; fineness ratio . ~.O;
diameter ratio = 0.742.
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Figure 8.- me variation of static-pressure coefficient with local-area
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ratio = 0.742.
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